If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+4c-8=0
a = 1; b = 4; c = -8;
Δ = b2-4ac
Δ = 42-4·1·(-8)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{3}}{2*1}=\frac{-4-4\sqrt{3}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{3}}{2*1}=\frac{-4+4\sqrt{3}}{2} $
| x+42+x+72=180 | | 13p+2=36 | | x+80+65+x+45=180 | | 1.3*2.3x=5.8 | | 130+2x+3x=180 | | 130+2x+3x=1801 | | 7(4-9)=26+6x | | 5x=14+7x | | 9+1/4x=7 | | 5(3n+7+3n)=n(7+5) | | 18=2x^2+8x+26 | | 2x^2-8x-18=8 | | -3m-3=-9 | | 2d+5.25=23.23 | | 14x*7=1470 | | (=8x-1)+(10x+9) | | =(8x-1)+(10x+9) | | 9*7x=252 | | 11-13x=-67 | | 11-13x=-64 | | 10*15x=600 | | 12(x-1=-3(4-x)+9x | | 39x+2+40+60=360 | | 12x/1=36 | | 4-15x=-56 | | 14x-13=43 | | 2x^2=-5-2 | | 4+10x=64 | | 3-10x=-47 | | 2x-4+3x=17 | | w-13=19 | | 3x+9=333 |